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Simple analytic expressions are derived for LM guidance

perturbations due to initial state errors and to lunar slopes.

The main assumptions of the analysis are: no radar noise, uniform

radar weighting, constant slope, and restriction to that portion

of the trajectory between throttle down and high gate. The results

may provide a useful adjunct to the detailed simulations commonly

employed.

In the absence of a priori terrain corrections, it is

shown that a slope corresponds approximately to a misalignment of

axes which leads to extremely large perturbations. These may be

further magnified under special conditions, e.g., when the inertial

estimate of altitude is more accurate than the radar estimate, or

when the slope terminates shortly before high gate. It is believed

that appropriate adjustments in the iterative calculation of time-

to-go may improve the guidance response characteristics.

A relatively recent guidance modification inputs the

terrain profile expected to be encountered. Although the effective-

ness of this modification has not been explicitly studied here, the

general techniques developed can undoubtedly be applied to estimate

the effect of deviations between the a priori and the actual terrain.

Of course, when considering contingency landings to a completely

different region, the analysis is directly applicable.
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I. INTRODUCTION

Simulation studies of LM descent guidance performed

by Bellcomm, 1 MIT, 2 and MSC 3 have exhibited large pitch pertur-

bations arising from variations in the lunar terrain. Under

certain conditions, degraded performance of the landing radar

has resulted, so that it has been necessary to constrain the

terrain profile encountered. The problem may become even more

severe for future lunar missions where landing sites may be

located in relatively rough terrain.

This memorandum studies the effect of lunar slopes on

the guidance system. The analysis is deterministic--radar

noise is neglected in order to concentrate on the relative

weighting attached to the radar observations (i.e., the degree

of filtering). Only that portion of LM descent between throttle-

down and high gate has been treated. After throttle-down lunar

curvature is small, and a flat moon approximation can be used.

Even more important, the guidance differential equations are

linear. The effect of terrain, after filtering of the radar

measurements, can then be described in terms of a forcing

function and the perturbation readily determined. It turns

out that the analysis is largely independent of the nominal

trajectory, and the behavior of the system can be explained
in relatively simple terms.

The preliminary section 2 summarizes the main features

of the LM guidance, including radar updating. Also defined is

the nominal trajectory used to illustrate numerically the effect

of the perturbations upon the pitch profile. Section 3 analyzes

the effect of initial IMU altitude errors. Apart from its

intrinsic interest, this analysis provides a useful vehicle for

introducing various concepts that enter into the treatment of

slopes. Section 4 analyzes similarly the effect of initial

velocity errors. In section 5 the response to sloping terrain

is studied, both when the slope continues all the way to high

gate, and also when only a portion of the terrain slopes.

Equations applicable to an arbitrary sequence of slopes, which

can approximate most types of terrain, are presented in the
appendices.



BELLCOMM, INC. - 2 -

Some implications of the analysis are discussed in

section 6, with comments on the likely gain from employing such

techniques as on-board estimation of slope or improved optimiza-

tion of time-to-go.

II. SU_RY OF LM DESCENT GUIDANCE*

2.1 Equations

The LM descent employs an iterative quadratic guidance

scheme which under ideal conditions converges to desired aim

points in position, velocity, and acceleration. Since the equa-

tions for the down range component z are identical in form with

the equations for the altitude component x, only the latter need

be described. Specifically, the inertial acceleration for x is

given by

x(t) = x D + Clx(tf-t ) + C2x(tf-t)2 (i)

tf is the terminal time for high gate, and is assumed to be
,.

constant, x D is the desired terminal acceleration, i.e.,
• . .°

x(tf) = x D. Integrating (i) gives the velocity equation

"" 1 2 1 3
(t) = Xo - xD(tf-t) - _ Clx(tf-t) - _ C2x(tf-t) (2)

where XD is desired terminal velocity, i.e., x(t

Integrating (2) gives position

f) = XD"

1 "" 2 1 3 1 (tf-t)x(t) = x D - xD(tf-t) + _ Xo(tf-t ) + _ Clx(tf-t) + _-_ c2 x
4

(3)

where x D is desired terminal altitude, i.e., x(tf) = x D.

Solving (2) and (3) for Clx and c2× , for arbitrary time t, gives

*More complete details are given in References 2 and 4.
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JI_ x (t) +3x D X (t)-x D
_ 6 + + 4 2

Clx tf-t XD tf-t (tf-t)

(4)

½ x(t)-x2]12 XD x(t)+2XDtf-t

(tf-t) _tf- )

(5)

Substituting into (i) gives the guidance differential equation

.... 6 (x(t) 12 (x (t)_xD)
x(t) = x D tf-t +XD) (tf-t)2

(6)

Conversely, the solution of (6) is given by (1)-(5). In the

absence of errors, the coefficients Clx and C2x in (4) and (5)

do not depend on the choice of t. When errors are present, it

is reasonable then to use (6) as an iterative guidance law where

at any time t the correct best estimates of altitude and velocity
^

x(t) and x(t), are employed.

Several amplifying remarks concerning the above

guidance scheme are appropriate; these will serve also to point

out some of the simplifying assumptions made in the analysis.

1. Prior to throttle-down, tf (or tgo=tf-t) is

computed iteratively so as to keep Clz (so-called down-range

jerk) constant. Throttle control is initiated when the required

thrust, according to equation (6), corresponds to 52% of maximum

thrust available. In order to retain the capability for thrust

control, the throttle must range between 10% and 60%. After

throttle-down tf is essentially constant (the down-range component

z is not affected by terrain variations) and the coupling between

the x and z guidance equations is therefore removed.

2. In order to achieve the inertial acceleration prescribed

by (6), the commanded thrust accelerations, Xc(t) and Zc(t), must

offset the gravitational acceleration g. Between throttle-down and
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and high gate, the down range distance traverses a lunar central

angle of about 2 ° . Hence the assumption of a flat moon with

constant g in the x direction affords a satisfactory approxima-
tion and

x c(t) = x(t) + g

•° °,

z (t) = z (t)
c

(7)

3. Although the solution of (6) approaches a well-defined

limit as t ÷ 0, the computation becomes highly unstable in the
go

presence of errors. For this reason, as well as others of even more

consequence, the latest modification to the LM guidance terminates

the braking phase when t = 40 seconds. Nonetheless, the response
go

characteristics of the system can be better understood by supposing

that equation (6) extends all the way to t = 0.
go

4. Radar range measurements are processed every 2 seconds

and the altitude is updated by taking a weighted average of the IMU

and the radar estimates. A linear radar weighting function is

employed which starts at 25,000 feet altitude and reaches its maxi-

mum value of .55 at touchdown. A Doppler radar measures three

components of velocity, each component being updated cyclically

every 6 seconds. The weighting functions actually employed are

linear; however, for reasons of mathematical simplicity, only con-

stant weighting functions have been studied here--this departure

is not considered important. Two significant operating limitations

on the direction of the landing radar beams should be noted. If

the incidence angle is too low, the signal-to-noise level may become

unacceptably low. At the other extreme, when normal incidence is

approached, zero Doppler boundarymay be reached.

5. When the estimated altitude, t) = x(t) + b(t), is

used in the guidance equation (6), the bias b(t) acts as a forcing

function to perturb the trajectory. Velocity bias 6(t) leads to

analogous perturbations. The bias functions generated by the

(constant) radar filters, as a result of initial altitude errors,

initial velocity errors, and terrain slopes, and their corresponding

effects upon the guidance, are analyzed in detail in Appendices A

and B. A summary discussion, including numerical results, is

presented in sections 3 - 5.
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2.2 Nominal Trajectory

As mentioned in the introductory section, the

perturbation analysis is largely independent of the particular

trajectory selected. However, in order to assess more readily

the significance of these perturbations, it is useful to present

the numerical results in the context of a nominal trajectory.

The trajectory used in this study represents a flat moon fit to

a trajectory obtained from the Bellcomm descent simulation pro-

gram, with IMU and radar errors set to zero.* High-gate aim

points, initial conditions at the start of throttle-down (t=0),

and the guidance parameters derived therefrom (the c's in

equation (i)), are tabulated below (units are feet and seconds).

"" --4

x D = 9866, XD = -150.9, x D = ,1.73, Clx .04667, C2x -4.17 x l0

x 0 = 21,752, x0 = -39.1

.°

z D = -42,000, ;D = 704.7, z
= = - 0 -4

D = -9.84, Clz .03, C2z .878 x 1

z 0 = -190,289, S 0 = 1720.1

2
Average lunar g was taken to be 5.34 ft/sec ; the duration of the

phase was 120 sec.

The above trajectory differs somewhat from those employed

in the Apollo ii and 12 missions. 5'6 In particular, high gate

altitudes (xD) were only 7129 ft. and 7334 ft., respectively.

However, the time duration (tf) between throttle-down and high

gate, one of the most significant parameters in this study, was

118 seconds for both missions.

*The assistance of Gary Bush, Bellcomm, is gratefully

acknowledged.
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Figure 1 plots the position and velocity components of

the assumed nominal trajectory, using equations (2) and (3).

_(t) does not depart markedly from linearity, suggesting that the

higher order contributions due to Clz and C2z are small. Although

t=0 is taken to be throttle-down time, altitude updating has

actually been going on for some 30 seconds prior. As noted previously,

this time period is ignored in the analysis.

Figure 2 plots the components of acceleration, (equations

(I) and (7)) and also the total given by

°°

a (t) = [x 2 (t) + z 2 (t) ]1/2 (8)
c c

Also shown is the throttle setting T(t) defined by

F(t)
T (t) -

F
max

If0tM - V_ ac(_)d_o
- a (t)e

F c
max

(9)

where

Fma x = maximum engine thrust = 10,500 gE ibs. force*

F(t) = commanded thrust at time t

M ° LM mass at throttle-down = 21,530 ibs. mass

V E = exhaust velocity = 9813 fps

For the nominal trajectory, the throttle is initially (by

definition) 52%, and increases gradually, remaining just below

60%n The values of z are sufficiently large that perturbations

in x are unlikely to cause T to fall below 10%. For T to exceed

60% near high gate, a positive perturbation of 2.45 ft/sec 2 is

required.

*In practice, Fma x increases slightly with time.
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by
Figure 3 shows the nominal pitch profile _(t) defined

oo

_(t) tan -I xc (t)
= .. , 0 _ _ _< 90 ° (i0)

z(t)

The pitch at the beginning and at the end of the phase are
fairly close, and the total variation is about 10 ° . Also shown

in the figure are the pitch boundaries corresponding to the

operational limits on the radar beam incidence angle. (These

have been estimated using the boundary curves in Reference 2.)

It appears that only toward the early portion of the phase do

these constraints have any possibility of being Violated.

III. INITIAL ALTITUDE ERROR

Suppose that at t=0 the IMU estimate of altitude is in

error by an amount b0.* This includes not only the propagation

of state errors from time of ignition but also any error in esti-
mate of radius of the moon. Altitude radar measurements are

processed every A(=2) seconds, with the filter using a weighted

average of the IMU estimate and the radar measurement to pro-

vide an updated estimate of altitude. Assuming the radar weighting

function to be constant, say w, and ignoring random radar errors,

then a fraction w of the bias will be removed at each updating

time t n. The remaining bias _n is simply

n

^

= (l-w) bn_ 1

= b 0 (l-w) n

(ii)

When w is not too large, one can use a continuous approximation to

the discrete solution (ii), which leads to an exponential fall-off:

where

^

b(t) = b0e-_t (12)

*The terminology, IMU error or bias, is used to denote the

state vector estimation error generated solely from processing of

accelerometer and gyro readings, prior to the time when radar data
is available.
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w
= -- (13)

can be interpreted as the correction rate.

corresponds in the continuous case to e=_.)

(Note that w=l

^

By substituting x(t) = x(t) + b(t) into the guidance
equation (6), the perturbed acceleration, 6x(t), due to b(t) is

seen to be given by the response of (6) to the forcing function

-12b(t)/(tf-t) 2 A formal analysis is given in Appendix B--more

intuitive derivations are presented below.

First note that the case when w=l, whereby the entire

bias is removed at t=0, is equivalent to a change in initial

conditions from x 0 to x0-b0 (b0>0 means that the prior estimate

was high). The changes in the response coefficients, Clx and

C2x, of equation (i) are readily obtained from equations (4)

3 36bo/tf4and (5) with t=0, giving 6Clx = -24b0/t f , 6C2x =

Hence the perturbation in (i) is simply the quadratic

.. 12b 0 [
6x(t) - _ (tf-t) 2

tf 2 tf 2

12b 0

2 (1 - t) _ 3t)
tf (i tf

tf

(14)

Note that if altitude filtering had started at time tl, and the

entire bias b 0 had been removed then, the response would be the

bysamet_tl.as (14) except that tf is replaced by tfl _ tf - t I and t

^

The general case, w<l, with bias b(t), can be treated

by considering t I variable (say s) and noting that in the

infinitesimal interval (s, s+As) the bias removed is

b(s+As) - b(s) _ 6' (s)As. At time t (t>s) the contribution to

the perturbation is, by (14)

12

(tf-s)

2 (i
t-s Ss) (1 - 3 (s) s
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Hence the total perturbation at time t is given by the integral

over all s(0 & s _ t), namely

"" --I t b' (s) t-s t-s

6x(t) = 12 J0 (i ) (i - 3 )ds(tf_s) 2 tf-s

(15)

(15) does not depend upon the nominal trajectory. When b(t) is

given by (12), equation (15) can be evaluated in terms of the

exponential integral, for which tables are available 7.

The results are plotted in Figure 4 for several values

of w. Since, as in (14), the response is proportional to

b0/tf2, a convenient normalization is obtained by choosing12

b 0 = 1200 ft.--with tf = 120 sec., then 12 b0/tf 2 = i. Note also

that the response depends only upon non-dimensional time t/tf [or

(t-tl)/(tf-tl)] and upon the total "equivalent" number of corrections

atf [or w(tf-tl)/A].

The perturbations in Figure 4 are typically "oscillatory"

with a positive peak in the beginning portion, and in the later

portion what might suggestively be referred to as a "restoring"

peak. The smaller w is, the more gradually the bias is removed,

the smaller is the initial peak and the later the occurrence of

the restoring peak. When w approaches zero the perturbation is

identically zero, but the terminal bias is -b 0. In general the

terminal biases in altitude, (vertical) velocity and acceleration

are given by:

-etf

6x(tf) = -b0e

-atf

6x(tf) = 2b0ee (16)

"" 2 -_tf

_x(tf) = -6b0a e
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Using the nominal values of tf = 120 sec., b 0 = 1200 ft., and

A = 2 sec., the terminal biases for the w's in Figure 4 are:*

w

6x(tf) _ ft

6x(tf) _ fps

6x(tf) _ ft/sec 2

0

-1200

0

.05

-6O

-.225

.i

-3

.3

--.045

.2

-.007

.0014

-.0004

1.0

0

For w=.l the terminal errors are negligible, and even for w=.05

they are relatively small.

Using the nominal trajectory described in section 2.2,

the resultant pitch and total acceleration have been determined.

The pitch profile in Figure 4P assumes b 0 = _ 2400 ft. The

curve for w=0 represents the nominal, unperturbed pitch (Figure 3),

and w=l is the limiting solution. From examination of the radar

operational limits in Figure 3, it appears that only for negative

biases and only during the early portion of the phase are the

pitch perturbations likely to be operationally significant; hence

in this region the use of low weighting for the radar appears to

be most advantageous.

Regarding total acceleration (Figure 5), the most

significant effects occur at the later times where the possibility

exists of exceeding the 60% throttle limit. Again this problem

arises only for negative bias, and the weighting function appears

to be relatively unimportant.

*The actual biases, corresponding to t
go

be somewhat different (see Appendix B).

= 40 seconds, would
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IV. INITIAL VELOCITY ERROR

Both (vertical) velocity filtering and altitude

filtering affect the perturbation resulting from an initial

velocity error c o . The relevant parameters are: (i) Altitude

radar weight w, with correction rate _=w/&; (ii) Velocity radar

weight v, with correction rate B=v/A v (updating interval

Av=6 sec); and (iii) Time t I that velocity radar updating begins.

The analysis requires the determination of both the velocity bias

function c(t), which is unaffected by altitude filtering, and

also the induced altitude bias b (t).
v

The velocity bias is analogous to that for altitude

bias discussed in the preceding section. Specifically,

c(t) = r_ c0

_ (tmtl)Lc0e

t < t I

t >- t I

(17)

In the special case where tl=0 and the entire bias c 0 is removed

at t=0, i.e., v=l (B==), the perturbation is equivalent to a

change in initial velocity from x0 to x0 - c0" From equations

(I), (4), and (5) one gets, after some algebra,

"" 6c0 t 2t)

6x(t) - tf (i tf) (i - _ff (18)

The response is proportional to c0/t f and depends upon

non-dimensional time t/tf. Equation (18) holds for any altitude

filter weight w, since when v=l no altitude bias is induced.

Before generalizing (18) to v<l, it is convenient to

discuss first the special cases of velocity filtering only and

altitude filtering only.

4.1 Velocity Filtering Only (w=0)

In the absence of altitude filtering, the previous

result (18) for v=l holds when the starting time is tl>0 except
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that tf is replaced by tf = tf - t I and t by t - t I. By the
1

same argument leading to (15), when v<l the overall perturbation

is obtained by integrating (18) for variable t I (=s, say) and

with c O replaced by c' (s)As. Specifically,

0t
'" t-s ^

6x(t) = 6 (i t-s ) (i - 2 ) C' (s)ds

tf-s

^

where c' (s) is obtained from differentiating (17). The resulting

perturbations are plotted for various v in Figure 6 assuming

tl=0 and c0=20 fps, which gives the normalization 6 c0/tf=l.

For tl>0, only a change in scale is required. Qualitatively

the features are similar to those for initial altitude error

(Figure 4) except that the "restoring" peak is somewhat smaller.

The corresponding pitch profiles are plotted in Figure 6P,

assuming c o = ± 13 1/3 fps.

Although knowledge of the altitude bias function was

not needed in deriving the acceleration perturbation, its value
is of interest. Since w=0

_0 t

^ ^

b (t)= c(t)dt
V

Integrating (17) gives

(t) =
V

Cot

c o -B (t-t I )

c0t I + -_ (i - e ),

t < t I

t _ t I

After tl, the bias builds up asymptotically only by the additional

amount c0/B.
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4.2 Altitude Filterin_ Only (v=0)

Consider first the case where the altitude radar weight

w=l. In the time interval between s and s+As the amount of alti-

tude bias removed is CoAS. The resulting perturbation at any

later time t>s is, from equation (14),

CoAS
12 (i t-s

t-s

2 tf_s ) (i - 3 t--_-_)
(tf-s)

The total perturbation at time t is the sum of the perturbations

arising from each s between 0 and t, or

_0 t
_x(t) = 12c 0 1 t-s

(tf-s) 2 (i tf-s

Co t_)= 12 _f ( ) (i - tf

)(i - 3 t-s )
tf-s ds

(19)

When w<l, in each interval (s, s+As) the bias is

increased by an amount (l-w) c0As. Subsequent altitude filtering

decreases this, at time t>s, by the factor e -a(t-s) Hence the
overall bias is

_0 t
bv(t) = (l-w)c 0 e -_ (t-S)ds

Co -at)
= (l-w) -_- (i - e (20)

An exponential buildup results, reaching a "steady state" bias of

(l-w) c0/a. The perturbation effect of (20) is the same as for

an initial altitude error, of negative magnitude, given by equa-

tion (15) in section 3, which effect is subtracted from the

perturbation (19). It is interesting to note that the responses

(Figure 7) do not contain a negative "restoring" peak. The

pitch profiles are presented in Figure 7P, assuming c o = 13 1/3 fps.
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4.3 Both Velocity and Altitude Filtering

We first consider the case when w=l. The perturbation

due to altitude filtering alone (i.e., v=0) was previously given

by equation (19); while when v=l (and tl=0) the total perturba-

tion was given by (18). Hence the difference can be viewed, for

v=l, as the additional perturbation due to velocity filtering,
namely

6c 0

tf (i - __t_t) t_t_)tf (i - 4 tf
(21)

More generally when v < 1 the additional perturbation due to

velocity filtering is obtained from (21) in the usual way, giving

_0 t 1 t-s t-s6 tf-s (i tf_s ) (i - 4 t_) 6' (s)ds (22)

The resulting perturbations for w=l, i.e., the sum of (19) and

(22), are plotted in Figure 8 for tl=0. Except when v=0 the

results are qualitatively similar to w=0 (Figures 6 and 6P). A

"restoring" peak is present which increases in magnitude as v

decreases (but eventually decreases for v sufficiently small).

The analysis of the general case, with arbitrary w, v,

and tl, is essentially a combination of the results of the previous

special cases. Details are presented in Appendices A and B.

Figure 9 shows the perturbations for w=.l and for tl=0 and 40 sec.

Figure 10 similarly shows the results for v=.2. When ti=40 sec,

the perturbations become quite large since the velocity filtering

contribution is now accomplished within the smaller duration

tfl = tf - tf. Pitch profiles are shown in Figure 9P.

Terminal biases in altitude, velocity, and acceleration,

for tl=0 and 40 seconds, c0=20 fps, and tf=120 seconds, are pre-

sented in Table i.
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V. TERRAIN SLOPES

5.1 Constant Slope with Complete Filtering (w=l)

Suppose that the terrain has constant slope 0 throughout

the entire trajectory between throttle-down and high gate. Assume

also that the (range) radar measures without error the vertical

height above the surface.* The terrain bias, _(t), referenced to

the altitude at high gate, is then

(t) = tan8 (z D - z(t)) (23)

When w=l, as is initially assumed here, the response of the guidance

to _(t) reflects the effect of terrain, and no filtering component

is present.

Consider first the simple case where down range velocity

is constant, i.e.,

z(t) = z D - zD(tf-t) (24)

(23) then becomes

_(t) = ZD tanS(tf-t) (25)

Since (25) is linear in t, the resulting perturbation, say 60x(t) ,%

is equivalent to one arising from a constant velocity error of

amount _D tan0 (with altitude filtering only) so that from equation
(19)

60x(t) = 12tan8 Eff (i t_
(26)

*Actually, for sloping terrain a slight bias, whose magnitude

depends upon the pitch, arises from the fact that the range measure-

ment must be projected onto the local vertical.

In Appendix B, equation (83), the proportionality constant
is not included. Likewise for 6 6 6 below.

i' 2' 3
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For an intuitive explanation, note that if the vehicle were

moving at uniform horizontal velocity _D' with _(t)=0, the

terrain would appear to be rising (for e positive) at a rate

ZD tan e, which thus represents the relative vertical velocity.

This implies further that the bias could be removed, or at

least made constant, by rotating the x-z axes through an angle

so that the new x-axis is parallel to the terrain.

It is of some interest that (26) can also be derived

by substituting (25) into the guidance differential equation

(6), and observing that the aim points, x D and XD' are effec-

tively changed (relative to the altitude at t=0) by the amounts

z D tf tan % and 2z D tan 8, respectively.

The actual nominal down-range trajectory is not linear,

but rather a quartic (equation (3))

• z D

z(t) = zD - zD(tf-t ) + _- (tf-t)

2 Clz 3 C2z

+ T (tf-t) + 12 (tf-t)

The bias (23) now corresponds to that of a time-varying velocity

error. The contributions of the higher order terms in (27) can be

determined using the same method as in equations (15) and (19),

namely

f0t[6x(t) = 12 1 t-s

(tf-s)2 (i tf-s

)(i - 3 t-s _'(s)ds

f0 t
= 12 tan 8 [ ] & (s)ds

(28)

.o

In particular, the contribution of ZD, say 61x(t) , is t

It_ix(t) = -12 tan e zD • _ff (i 2 tf
(29)

t'"

z D is negative since the vehicle is decelerating. Also

61x(t) can be derived in the same way as for ZD' by considering

the equivalent changes in the aim points.

(27)
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Whereas in (26) the response to ZD is inversely proportional., to

tf, in equation (29) the magnitude of 61 depends only upon z D.

From (28), the contributions of Clz and C2z are readily
found to be

62x(t) = -12tane Clztf (i- ) (2 _ff + in(l- )

"" C2ztf263x(t) = 12tan8 [(l-_f) (i tf + (l_t_)in(l__f)_]

(30)

.°

Figure ii plots the 6ix(t), i=0, i, 2, 3, using

nominal values for the coefficients and (for convenience of

scaling) 6=2 ° The contributions of Clz and C2z are quite small,

so that the overall perturbation depends on the nominal trajectory

only through the aim points zD and ZD (and tf). Initially the

responses to each of these are approximately equal, but near high

gate the large negative response from zD dominates.

5.2 Effect of Altitude Filterin9 (w<l)

Let the altitude weighting be w, with correction rate

a=w/5. Assuming that the radar and the IMU agree just prior to

occurrence of the slope (at t=0), the filtered bias is

[ /0t s]bT(t) = e -at _(0) + ae _s _(s)d (31)

Integrating by parts gives

iT(t) = _(t) + bw(t) (32)

where

_0 t
bw(t) = -e -at e as _' (s)ds (33)
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bw(t) represents the filter component of the bias. For w=l,

lim b (t) = 0; while for w=0, lim b (t) = _(0) - _(t) and
w w

b T(t) ÷ _(0) .

When down range velocity is constant, _(t) is given

by (25) and b (t) becomes
w

Zm -at)b (t) = tane -- (l - e (34)
w e

The discrete version of the filter bias (34) is of some

interest. The incremental bias from successive radar observa-

tions, due to terrain slope, is z D tan e • A = _ say. Since the

filter retains the bias (l-w) a_ from the preceding update: the

th
cumulative bias at the n update is*

6_[i + (l-w)+...+(l-w) n-l] = a_ l-(l-w)n
w

, 0<w!l (35)

Letting n=t/_ and then 4+0 gives (34). For variable ab, say abj,

n n-j
(35) becomes [ a_. (l-w) which approaches (33).

j=l 3

The filter bias (34) can be further subdivided into the

"steady state" component, tan e • ZD/_, and the "transient",
-at

-e tan e • ZD/a, the negative sign indicating a buildup. The

filter transient yields the same perturbation as an initial

altitude error (compare equations (20) and (34)), which effect

is then subtracted from the terrain perturbation 60 . The steady
state bias, being constant, has no effect.

*Equation (35) assumes that each radar observation is taken

at the beginning of the A interval. If the observation occurs

at the end, (35) is multiplied by l-w.
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In the general case of nonlinear z(t), the filter bias

can be expressed in terms of a derivative operator D (see

Appendix A, equations (34)-(36)) as follows.

b (t) = D_(t) - D_(0) • e -at (36)
W

The first term represents the steady state component

D_(t) - -b' (t) + b" (t) b''' (t) + b (iv) (t)
2 3 4

.. o.

_D ZD zD= tan% e (tf-t) - _ +2 terms in Clz and c 2 z]

(37)

while the magnitude of the transient is

.° ,°

D_(0) = tane _D zDtf ZD +
Q O • (38)

The perturbation due to bw(t) is readily determined: the effect

of the transient DE(0) is the same as before (i.e.,..an initial

altitude error), while the effect of DE(t), namely z D tan e/a • (tf-t)

and higher order terms, can be obtained from formulas (29) and (30)

in the previous section.

Figure 12 shows the overall perturbations for various w.

(The difference between the w=l curve represents the response to

bw(t).) Near high gate the perturbations are quite large--as noted

previously this effect is due to zD. The pitch profiles are

plotted in Figure 12P. Terminal biases are shown in Table 2.

5.3 Variations on Constant Slope

I. When the slope begins at time tl>0, the preceding

discussion can be applied merely by translating the time orig_n

to t I. Since 60x(t), the contribution from _D' is inversely
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proportional to tf, this effect increases; but the contribution

from z D is unchanged. The overall perturbation is illustrated

in Figures 13 and 13P when tl=60 sec.

2. The previous results assumed initial agreement

between the IMU and the radar. If, however, the IMU estimate

were actually exact (relative to the altitude at high gate),

then the perturbations become more severe since the guidance

system eventually adopts the radar values. Omitting the con-

stant _(0) in equation (31) is equivalent to subtracting the

response to an initial altitude error, so that the overall

perturbation is given by the difference between the results in

Figures 4 and 12. (The appropriate value of b 0 to use with

Figure 4 is tan % • (ZD-Z 0) = 5178 ft. for e=2 ° and

tf=120 sec.--the response is plotted in Figure 15, which is

discussed under 3 below.) The net result is that there is a

large initial, as well as terminal, perturbation as shown in

Figures 14 and 14P. If the 2 ° slope were assumed to continue

from high gate to the site, and if the initial IMU altitude
error were zero when referenced to the altitude at the site,

the perturbations are even more pronounced. This is shown

for w=.l by the dashed curve in Figure 14.

3. Suppose the radar data were used merely to

estimate the slope of the terrain, and by extrapolation an

estimate then obtained of the altitude at high gate. If,

relative to this altitude, the initial IMU bias were zero

then clearly no correction to the trajectory would be needed.

Otherwise, the bias would be filtered in the same way as for

an initial altitude error. For the case where the IMU and

radar initially agree, it turns out that the perturbations

(Figures 15 and 15P) are appreciably larger than when the data

are filtered in the usual terrain following manner with the

bias being removed more gradually (Figures 12 and 12P). In

the former instance, however, the terminal velocity and acceler-

ation biases are reduced (see Table 2).

4. Suppose that the slope e terminates at some time

t I (prior to high gate) and that the terrain is flat thereafter.

At t I the radar sees a change in slope of amount -8 which induces

a perturbation similar to that at t=0 (section 5.2) but with

tf-t I in place of tf and t-t I in place of t. For t>t I the over-

all perturbation is the sum of the two separate perturbations.

The results are plotted in Figures 16 and 16P for various slope

durations tl, and for w=l.0 and .i. The "restoring" peak is

seen to be quite large, becoming progressively more severe the
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closer to high gate that the slope terminates. Somewhat

surprisingly, if the slope does not terminate at all (tl=120)

the perturbation becomes smaller, although in this case the

terminal errors are larger (Table 2). Similar, but even

larger perturbations are obtained if the slope does not begin to

appear until time-to-go is 60 sec. (Figures 17 and 17P). The

analysis for an arbitrary sequence of slopes is presented in
Appendices A and B.

VI. CONCLUSIONS AND COMMENTS

The main conclusion of this study is that sloping

terrain presents a potentially serious problem for the LM

guidance. Several possible methods for alleviating this problem

are briefly discussed below.

The large perturbations are believed to be basically

inherent to the present guidance scheme, in particular, the

fact that the altitude and down range guidance are uncoupled

and consequently time-to-go remains constant when the terrain

varies. (Neither of these characteristics is present in the

optimal bilinear tangent steering law; this law yields a

"minimal path", and hence probably also minimizes pitch pertur-

bations.) Further study would be required to determine whether

a simple, effective modification can be found to the present

subroutine for calculating time-to-go.

Although it would probably not be too difficult to

identify and estimate any lunar slope from the radar data, it

is not evident how such knowledge could be usefully exploited.

As noted in section 5.3, converting the terrain bias to an

(initial) position bias by extrapolating the slope to high gate,

leads to even more severe perturbations when the radar and IMU

initially agree. This is because the bias is then removed at

a much faster rate than when the usual terrain following scheme

is employed. A similar effect may arise if the coordinate

system were to be rotated whenever a slope change occurs.

Another alternative--and the one that has recently been adopted

in the LM guidance--is to input a prior estimate of the eleva-

tion profile for the expected ground track. However, the sensi-

tivity to deviations in the nominal trajectory may require

further study. The analysis in section 5 is expected to be appli-

cable to the difference between the a priori and the actual slope.

Finally, some improvement may be possible by allowing

the filter weighting to depend upon the magnitude of slope and

the remaining time-to-go. In general, the smaller the radar

weighting used, the smaller the perturbation. Although the

terminal high gate _rrors are thereby increased, in most

instances these appear to remain quite small.



BELLCOMM, INC. - 22 -

ACKNOWLEDGEMENTS

B. J. McCabe and G. C. Reis participated in the initial

phases of this study and made a number of valuable contributions.

R. R. Singers handled, ably and patiently, all of the computer

programming.

1033-PG-jf P. Gunther

Attachments

References

Appendices A - B

Tables 1 - 2

Figures 1 - 17P

Figure A1



BELLCOMM, INC.

REFERENCES

i • G• L. Bush, "Effect of Length of Terrain Slope on LM

Descent Viewing Angle", Bellcomm Memorandum for File,

July 8, 1969.

• • . "LM PGNCS and Landing RadarB Kriegsman and N Sears,

Operations during the Powered Landing Maneuver", MIT

Instrumentation Laboratory, E-1982, August 1966.

• D. C. Cheatham, Viewgraphs on "LM Guidance System

Constraints Affecting Landing Site and Approach to

Landing Site"•

• Guidance Software Operations Plan, Sec. 5.3.4 on Lunar

Landing Guidance, MIT/IL.

• F. Bennett, "Apollo 12 LM Descent with Apollo ii Comparisons",

Presentation to Apollo Guidance Software Task Force Meeting

Number 16, October 19, 1969.

6. P. A. Whitlock, "The Apollo 12 LM Descent Trajectory",

Bellcomm Memorandum for File, October 24, 1969.

, E. Jahnke and F. Emde, Tables of Functions, Dover

Publications, 1945.

• F. E. Harris, "Tables of the Exponential Integral Ei(x)",

MTAC, Vol. ii, 1957, pp. 9-16.



BELLCOMM, INC.

APPENDIX A

DERIVATION OF BIAS FORMULAS

A.1 EFFECT OF FILTER ON BIAS

This appendix derives expressions for the altitude

bias as affected by filtering of the radar observations starting

at the throttle-down point (t=0). It turns out to be convenient,

as indicated in Figure AI, to reference down-range z to the

nominal landing site, while altitude x is referenced to the

terrain at high gate. t Other quantities of interest, illustrated

in Figure AI, are:

x(t) = true altitude

_(t) = radar measurement of altitude (assumed to be

measured vertically above lunar surface and

without error)

x(t) = updated estimate of altitude, after filtering,

used in the guidance equation

^ ^

b(t) z x(t)-x(t) = bias in estimated altitude (1)

(t) _ _(t)-x(t) = terrain bias in radar altitude

measurement

(2)

Similar quantities can be defined for velocity x. In particular,
^

^

c(t) = x(t) - x(t) = bias in estimated velocity (3)

Initially we present a simplified description of the

filtering process. Suppose altitude updating is performed every

& seconds, say at times t I, t2, ..., t n, ..., where t n n_.

Let x* denote the extrapolated estimate of altitude derived from

IMU measurements during the interval 4. Specifically,

x* (tn+ I) = x(t n) + & • x(t n) (4)

+Assuming a flat moon, altitude referred to the site requires

only the addition of a fixed constant B (see equation (45)).
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^

where x is the estimated velocity at the midtime _ between
i n

t n and tn+ I. The filter updates the altitude using a weighted

average of the extrapolated and radar estimates, given approxi-

mately by

X(tn+ I) = (l-Wn+ I) x* ) + w _( )(tn+ 1 n+l x tn+ 1
(5)

where w
n+l

tn+ 1 •

is the weight given the radar measurement at time

In order to express the filter equation (5) in terms

of biases, we need to determine the bias in the extrapolated

estimate (4). The true altitude, for which the extrapolation

(4) is an estimate, is given by

X(tn+ I) = x(t n) + A • X(tn )

Subtracting (6) from (4) gives for the extrapolated bias

^

x* ) - X ) = b(t n) + A • c(t n)(tn+ 1 (tn+ 1

(6)

(7)

^

1 is the combined
_In fact X(_h ) = x(t n) + _ anA , where a n

thrust and gravitational accelerations, assumed constant during
the interval. If a is also assumed to be determined without

n ^

error, it follows that c([ n) = C(tn), which fact is used in (7).
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Subtracting now X(tn+ I) from both sides of (5) gives, in view of (7),

b(tn+ I) = (l-Wn+l)b(tn) + (l-Wn+ I)

^

A • c(t n) + Wn+iD(tn+l ) (8)

4
In the actual LM guidance computer, updating occurs

at the time, t +6 (0_6_A), when the radar measurement is taken.
n

'l'he filter equation (5), which corresponds to 6=A, is replaced by

X(tn+ I) = x* (tn+ I) + Wn+l[X(tn+6)-x ** (tn+6)] (5a)

where x** is a simple linear extrapolation of previous altitudes

given by

x** (tn+6) = x(t n) + 6 •

^ ^

x(t n) - X(tn_ I)
(9)

If one assumes that

X(tn) - X(tn_l)
^

1

x(tn). . + _ a- n

which has only a small second order error, then Wn+ 1 in the

second term of (8) is replaced by

- = 6
Wn+l _ Wn+l

(lO)

and equation (8) becomes

b(tn+l) = (l-Wn+l)b(tn) + (l-Wn+l) A • C(tn) + Wn+ib(tn+6) (Ii)
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Note that the later in the interval that the radar measurement

is taken, the larger is 6 and the smaller the contribution of
^

velocity bias C(tn). (In the computations, it was assumed that

6 = A, i.e., w = w.)

Since the filter is linear, the total altitude bias
^

b(t) can be considered to be the sum of individual effects due

to initial altitude error (bic(t)), initial velocity error
^

(bv(t)), and terrain variations (bT(t)). The succeeding sections

analyze these separately.

INITIAL ALTITUDE ERROR (bic(t))A.2

When the velocity and the terrain biases are zero,

(ii) reduces to _"

b(tn+ I) = (l-Wn+l)b(t n) (12)

Assuming that the radar weighting is assigned beforehand, (i.e.,

the w. depend only on t and not on x), (12) is a simple difference
l

equation. At t=0, let the initial IMU bias be b 0 = x 0 - x 0. The
solution of (12) is then

say w = w.
1

n

(tn) = b 0 (l-w i ) (13)

Consider now the simplest case of constant weights,

Then

^

b(t n) = b 0(l-w) n (13a)

%For simplicity the subscript IC (denoting initial altitude

condition) is omitted from bic.
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Since n = tn/A, we can write

-aDtn

b(tn ) = b0 e (14)

where

1
in (l-w)

aD = A

2
W W

= w (i+_+-_- + ...) (15)A

The solution (14) suggests consideration of the

(continuous) differential equation approximation to the (discrete)

difference equation (12). We can rewrite (12) as

^ ^

b(t+A)-b(t) = -_(t)b(t) (16)
A

where

w(t) (17)
a(t) - A

For A sufficiently small, the left hand side is approximately

b' (t), so that approximately

^

b' (t) = -_ (t)b(t) (18)

and hence

A <
b (t) = b0e

a (s)ds

(19)



BELLCOMM, INC. - A6 -

When w(t) is constant, say w, and _=w/_, then

(t) = b0e-_t (20)

Comparing this with (14) and (15), one sees that (20) under-

estimates the bias. A second order approximation to the discrete
solution is

(t) = b0e-a(l+2) t (21)

For w reasonably small, the first order solution (20) will be

sufficiently accurate. (For later use, observe that when w=l

the discrete solution is b(t n) = 0 (n>0), which corresponds in

the continuous case to a=_.) To first order the relevant parameter

is the correction rate _. The bias remaining at time t depends
% n

upon the product at n = wn , which can be interpreted as the

"equivalent" number of radar corrections.

The subsequent analysis treats only the case of

constant weight w. In practice w does vary, and even depends

upon x. From the nature of the results, it appears likely that

most of the important effects upon the guidance can be studied,

at least qualitatively, through analysis of this simple case.

A.3 INITIAL VELOCITY ERROR (b (t))
V

We first consider the effect of velocity filtering

on the bias c(t) in the estimate of (vertical) velocity. The

analysis is almost identical with that just given for position.

Let c o be the initial velocity bias, let v be the constant

weight used in filtering the radar velocity measurements, A
V

n /OtIn general, upon _ w. or w(s)ds
1 1
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the updating interval, B _ v/A v the correction rate, and t 1

the time when velocity radar measurements are first processed.

Then, as in (18), the continuous approximation to the difference

equation is

c'(t) =(0 '6c(t) ,

0 < t < t I_

t > t I

(22)

whose solution is

c(t) J c0 0 _ t < t I= (23)

tc0 e-B (t-tl) t > t 1

Equation (23) is applicable to all three velocity components (with

appropriate B's).

The velocity bias also affects the extrapolated estimate

of altitude, x*. Without any filtering, an initial velocity error

c O results at time t in a position error by(t) = c0(t). With alti-

tude filtering, and with terrain bias _ assumed to De zero, we get

from equation (ii)

^

b (tn+ I) -b (tn) ^ ^

A =-_b(tn) + (l-w)C(tn) (24)

Letting A ÷ 0 gives the differential equation

^ __ ^

b' (t) =-_b (t) + (l-w)c(t) (25)
v v

It is also assumed, as in the analysis of altitude bias,

that accelerometer measurements are without error.
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Assuming b(0) = 0, the solution of (25) yields the velocity

contribution to the altitude bias, viz.,

_0 t

^ -- -at as ^
bv(t) = (l-w)e e c(s)ds (26)

^

Substituting c(t) from equation (23) leads to explicit

formulas for 6v(t). We consider first some special cases:

(i) w = 0 = w = a

bv (t) = _0 t
c(s)ds

(l_e-8 (t-t I) )

0_< t_< t I

, t > t I

(27)

(ii) v= 0 = 8

^

c (t) = c o

^ c o
b v(t) = (l-w) -- (1-e -at )

a (28)

(iii) tl = 0

^

-Bt
c (t) = c^e

U

c 0
iv(t) = (l-w) a---_ (e-St e -at) ,- _gS (29a)
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When a=_, the last expression becomes indeterminate.

to the limit gives

(iii') b v(t) = (1-w) c0e-_tlim
_-_+0

e (a-B)t_l

a-B

Passing

M

= (l-w) c0te-St , e = (29b)

(iv) General case.
^

c(t) is given by (23) and

(t)
v

(l-w) c 0

1 -at)(l-e , 0 _< t _< t 1

i[__ -_(t-tl) -_(t-tl) t_e - Be _ e-e ,

(_ - _)

t > tl, e _ _

-a (t-t I) 1 -_ (t-tl) -_t) ,
(t-t l)e + --e (e - e

(30)

t > tl, e = 8

A.4 TERRAIN BIAS (iT(t))

The differential equation for the altitude bias due to
^

terrain is obtained from equation (ii) by setting c(t)=0 and let-

ting A+0. (For simplicity the contribution due to computation
--Jb

delay 6, namely wb' (t), is omitted.) One gets

bT(t) = -abT(t) + _(t) (31)

where _(t) describes the terrain variation. Including for the

moment the contribution due to initial IMU bias b 0, the solution

of (31) gives the altitude bias contributed by the terrain:

[ /0 s]bT(t) = e -at b 0 + ae as _(s)d (32)
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In the special case when _(t) = B, i.e., flat terrain with

constant radar bias, and b 0 = 0, then

b T(t) = B(1-e -at ) (33)

so that the full radar bias is eventually incorporated into the

guidance system.

Equation (32) can be successively integrated by parts,

assuming _(t) to be sufficiently differentiable, to give*

bT(t) = _(t) + D_(t) - e (b0-b0+DS0) (34)

where (for later use) we let the operator D represent derivatives

up to the fourth order. Specifically,

' _" (t) _"' (t) + _(iv) (t)-_ (t) + R (35)
D_ (t) - e 2 3 4

b0_ = _(0) , D _o = D_(t) It=0 (36)

-at /0 t

R- e as _ (v)
4 e (s)ds (37)

The three terms in (34) represent the three components of the

filtered terrain bias (discussed in section 5.2 of the report),

viz. (i) terrain alone, (ii) steady state filter bias, and

(iii) filter transient.

We suppose now that the terrain has constant slope e.

If ZD(=z(tf)) is the down range aim point, and if the terrain

*If the effect of _ is included in (31), then DE(t) and D_ 0
are multiplied by l-w.
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bias is measured relative to the altitude at high gate, then

_(t) = tane[zD-z(t)] (38)

After the engine throttles down, the down-range component of

the trajectory is the quartic polynomial

1 4
_ i'" 2 1 (tf-t) 3 + l_C2z(tf-t)z(t) = zD zD(tf-t) + _z D(tf-t) + _Clz (39)

Note that z(t) is unperturbed by variations in the terrain.

Equations (35) and (38) then imply that

D_(t) = -tan e Dz(t) (40)

From (35), (37) and (39) we get also

R = 0 (41)

and

1 _ a i(tf-t)i
Dz (t) = - _ y._

i=0

(42)
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where

a 3 = -2C2z

a
3

a 2 = -Clz + --

•. a 2

a I = -z D + --

a 1

a0 = ZD + --

(43)

Substituting (38) and (40) into (34) gives finally

-at -at
b T(t) = b0e + tan0 [ZD-Z(t)-Dz(t)-e (ZD-Zo-DZ 0) ] (44)

The initial and final conditions are to a certain

extent ambiguous and several different cases are of interest.

First, the bias can be referenced to the site rather than to

high gate. In (34) we need only make the substitution

(t) ÷ _(t) + _2 B (45)

b 0 + 50 + E2B (46)

where

B = bias in terrain at high gate relative to the site t

#0 if reference altitude is high gate

E2
if reference altitude is the site

(47)

%Note that B is equivalent to a constant radar bias (cf.

If the same slope e continues from high gate to the site, then

B = -z D tan 0.

(33)).
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Secondly, if one assumes an initial IMU error of zero,

this could be referenced either to the final terrain or to the

initial terrain, i.e., either b 0 = 0 or b 0 = _0" (An interpreta-

tion of the latter is that IMU and radar agree until departure

from flat terrain occurs.) To accommodate this dual situation

we can make the substitution

b 0 - b 0 + E Ib 0
(48)

where

E1 =(0 if b 0 = b 0

1 if b 0 0

(49)

More generally, let A 0 be the initial discrepancy
between radar and IMU, i.e.,

A 0 = b 0 - b 0 (50a)

In terms of E and 62' (46) and (48) gives
1

&0 = El(_0 +E2B)

= el[E2S+tane (ZD-Z O) ]

(50b)

Substituting (45) and (50) into (34) gives

A

bT(t) = _(t) + e2B + Db(t) - e-_t(_0+D_0 ) (51a)
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In terms of z (t), this becomes

-at
b T(t) = E2B + tan8 [ZD-Z(t)-Dz(t) ] - e [EiE2B+tane{_l(ZD-Zo)-Dz0}] (51b)

When _l = e2

reduces to

= 0, which is the situation of most interest, (51b)

bT(t) = tane [ZD-Z (t)-Dz(t)-e -at(-Dz o) ] (51c)

We now suppose, more generally, that the terrain can

be approximated by n sections each with constant slope, say

01, ..., 8 • Let the slope %. occur for zi_ 1 < z < zi, and letn l -

the corresponding time interval for the nominal z trajectory be

< t _ t i where we set t o = 0 t n = tf. Let _. = _(t i)ti- 1

. Then, for ti_ 1 < t _ t. (i=l,...,n)be the terrain bias when t = t i

(t) = _i + tan ei(zi-z(t)) (52)

When b(t) is continuous (no jumps in the terrain), (52) implies that

_i-i = _ + tan e )i i (zi-zi-i (53)

I.e., the _. are computed backwards starting from high gate
1

zn (=z D) , with _n = _2 B the bias at high gate.

A recursion relation for bT(t), which generalizes (34),

can be derived by subdividing the interval of integration in (32)

at ti_ 1. For ti_ 1 < t _< t.,l we get
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-a (t-ti_ 1 )

b T(t) = _(t) + D_(t) - e

'b ^

(bi_l-b T (ti_ 1 )+D_i_ 1 (54)

where 6 T(0) = b 0.

form of (54) :

Of some incidental interest is a symmetric

at _i T ati-i _ ^e [_(t) (t)+D_(t) ] = e [bi_l-bT(ti_l)+Dbi_l] (55)

Substituting (52) and (53) into (54), gives the following

recursive generalization of (44) and (51b)

^ ^ -_(t-ti_l) -a (t-t. )

bT(t ) = bT(ti_l) e +_i(l_ e i-i ) + tanei[zi_z(t)_Dz(t )

-a (t-ti_ 1 )
-e (zi-zi_l-DZi_l)]

(56)

for ti_ 1 < t _< t.l. By induction it follows that

-e (t-ti_ 1 )

b T(t) = _i+tanei[zi-z(t)-Dz(t) ]-e [(tanei-tanei_l) (-DZi_l)]

(57)

-(t-t. ) -at (-Dz)+A ]
e i-2 [ (tanei_l_tanei_2) (_Dzi_2)]_..._e [tane I 0 0

Of particular interest is the special case where n=2

and e2=0 (i.e., slope e for 0 < t & t I and flat terrain for

t I < t _ tf). Equation (57) then reduces to
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b T (t) =

-_t

,e2B+tan0 [Zl-Z(t)-Dz(t) ]-e

-e (t-tl) -_t

E 2B+e tan0 (-Dz l)-e

[tan0 (-Dz0)+A 0], 0 < t _< t I,

(58)

[tan0 (-Dz0)+A0], t I < t < tf

where

A 0 = EI[_2 B + tane(zl-z0)]

Although most terrain profiles can be approximated

satisfactorily by a sequence of piece-wise constant slopes, a

direct solution may also be of interest. Let hlz) represent

the altitude profile so that the radar bias is b(z) = h(z D) - h(z).
The instantaneous slope is then m(z) _ h' (z) = -b' (z). Integrating

equation (32) successively by parts gives (where z=z(t) or z(s))

(/0t )-st _S (59)bT(t) = _(z) + e e m(z)z(s)ds - A 0

= _(z) + m(z)Dz(t) - [m(z0)Dz0+A0 ] e -st +

_0 t
+ e -st e_Sm ' (z)z (s)Dz (s)ds

(60)
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APPENDIX B

ANALYSIS OF GUIDANCE PERTURBATIONS

B.I PRELIMINARIES

The guidance differential equation (D.E.) for altitude

is given by

.... 6 (_ (t) +_D ) 12 <

x(t) = x D tf-t (tf-t) 2 (x(t)-x D) , 0 _ t <- tf

(i)

Assuming that tf is constant, (i) is a Cauchy-type linear D.E.

which can be converted into constant coefficients by the trans-
formation

-T t

e = 1 tf ' 0 _ T < _ (2)

Letting ' represent d/dT, (1) becomes

°" --

x" (T) + 7x' (T) + 12x(T) = tf2xD 6tfx D + 12x D (3)

The eigenvalues are -4 and -3, so that e -4T and e -3T are

independent solutions of the homogeneous portion of (3).

general solution is easily seen to be

The

XD tf2 -2Tx(T) = cle-3T + c2 e-4T + x D - xDtfe -T + -_- e (4)

In terms of tg o = tf -
t, we have, using (2),

tAlthough slightly ambiguous mathematically, it is more

convenient to use t as the independent variable on the right
go

side, and t on the left. If, say, x*(tgo).. = x(t) = x(tf-tg o) and

' = d/dtgo, then x(t) = -x*' (tg O) , x(t) = x*" (tg o) , etc.
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°°

_Dtg O XD 2 + Clx 3 + Cl_ t 4x(t) = x D - + --2 tgo _ tgo go
(5)

Differentiating (5) successively gives

•" Clx 2 C2x 3

x(t) = XD - XDtgo 2 tgo 3 tgo
(6)

"" 2

x'(t) = x D + Clxtg ° + C2xtg °
(7)

From (5) - (7) one gets x(tf) = x D, x(tf) = XD' x(tf) = x D.

If x 0 and x0 are the initial values for t=0, then (5) and (6)

yield

_ (x0+3XD) 4 (x0-xD) ]
_ 6 _D + + 2

Clx tf tf tf

(8)

C2x t7 XD tf tf2

(9)

For purpose of analyzing disturbances to the D.E.

(i) it is convenient to work with the state transition matrix

3 4
_. Since t and t are known to be independent solutions

go 2go 3
for x(t), and -3t and -4t the corresponding solutions for

go go

x(t), _ can be obtained from the following equation (letting

Sg ° = tf-s)
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(t ,s ) =
go go

-i

tgo3to (3I Sg ° Sgo

_4tgo 3 2 -4s\-3tgo 2 / -3Sgo go

(i0)

4.Sgo. go, sg°LkSgol kSgolJ

12 , _ 3/gol
Sgo- Sgol _ _ got _Sgo/

If the expressions in the first row are denoted by ¢l(tgo, Sg o)

d

and _2(tgo, Sg o) respectively, and if $1(tgo, Sg O) = _ _l(tgo , Sgo),

and similarly for 42 , then

_(tg O, Sg O) = /__.l(tgO'

Sg O )

\@l(tgo' Sgo)

_2(tg °' Sg°) 1

@2 (tgo' Sgo)

(ii)

For the non-homogeneous D.E.

6_ (t) 12x (t)
x(t) + t + 2 = (t) (=f(tg o)

)

go t
go

(12)

^

where f(tg o) = f(tf-tgo), the general solution can be obtained

from the usual variation of parameters formula. Since we are

interested primarily in x(t), it is convenient to augment the

state vector and transition matrix. Observing that
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_t tf $ (tg O Sgo)f (Sg O)dsg O) f(tg O)

d =

d-_ 2 '

go

+

tf

It _2 (tgo'Sg°) f (Sg O) dsgO

go

the augmented form of the solution can be written as follows.

X (t)_ /:i (tgo, tf ) :2 (tgo' tf)_I_ (:0 I LI I /4P 2 (tgo' Sgo) X_

x(t))=k@l(tgo'tf) @2(tgo 'tf)) kXo/ + f(Sgo)_ii$2(tg°'Sg°) ) dSg 0

xCt)l \@l(tgo'tf) _2(tgo'tf)/ k@2(tgo'Sgo)/

(13)

When f(tg o) corresponds to the original D.E.

(i), i.e.,

.. 6x D 12x D

(tg o) +
f = x D tg o tg o

(14)

the solution is equivalent to (5) - (9).

B.2 PERTURBATIONS DUE TO BIAS ^^

In practice the guidance D.E. uses estimates, x and x,

rather than true values of position and velocity. Equation (i)

is then replaced by

^ 12 (x(t)-xD)
•. "" 6 (x (t) +XD ) =
x (t) = x D t t

go go

(15)
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Using the definitions of position and velocity bias in equations

%
(A4) and (A6) , viz.

^

b(t) = x(t) - x(t) (16)

^

^ •

c(t) = x(t) - x(t) (17)

and expressing these in terms of tgo, i.e.,

b(tg o) = b(tf-tg o) ;

^

b(tf) = b(0) = b 0 (18)

^ ^

C(tg o) = c(tf-tgo); C(tf) = c(0) = c o (19)

equation (15) can be written as

x(t) "" 6 (_ (t) +_D ) + 12 (x(t) 12b (tg°) 6c (t_°)- XD + t 2 -XD) = - 2 t
go t t go

go go

(2O)

The solution of (20) can be expressed as a perturbation

of the "nominal" solution say Xnom(t) , obtained when the biases

on the right had side are zero and the initial conditions are

specified as Xnom, 0 and _nom,0" (See Figure AI.) Define

6x(t) = x(t) - x
nom

(t)

6x(t) = x(t) - x (t) (21)
nom

(t)X ( ....6 t) = x(t) - x
nom

and, in particular,

_I.e., equations (4) and (6) in Appendix A.
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6x 0 = x 0 - xnom, 0

6_o = xo -
nom, 0

(22)

When the initial estimated position corresponds to the nominal,

i.e., x0 = Xnom,O, then (16) and (22) imply that 6x 0 = -b O.

Similarly if Xo = Xnom,O' then _Xo = -Co"

Using (21) and (22), the general solution (13) can now
be expressed as a perturbation

/t _)3 _ 3<t / [(tt__f)3

6; (t)_ 14_- /__0,21 tf3 t 3 t '

6X 12 - 4 - 3 g°
(t) = tf _ tf/ J tf_

6x(t)/ _t--_ - tfL_ tf I tf

2

+
tf [_ @°)b(s

12 2
s

go go

_S_olJ\

go /s °J /

+

ds
go

(23)

0

0

12b (to)
2

t
go 6C(tg°)_tg0



BELLCOMM, INC. - B7 -

The first term on the right represents the effect of a change

in initial conditions, while the remaining terms represent the

perturbation due to the biases.

Gx:

For ease of reference, we rewrite the expression for

6x(t) - -12
2

tf
+ 72[ tf

go

(t22--_5 - b(Sgo)dSg °

Sgo Sgo •

t6f [2(tt--_f}2 - (tt_f)]6x 0 + 36 /t tf

go
go Sgo I

c (Sg o) dSg O

12b(t o) 6c(t o)D

t
t go
go

(24)

Equation (24) can be put into more useful form by

integrating by parts. Assuming b(tg o) and C(tg o) to be
differentiable, one gets

2 tf 2 ---_3]

.. [ (tt__fI (tt__f)] _t [3t 2t
_x(t) = 12 3 - 2 (6x0+b 0) + 12 go_4

tf 2 Sg O Sgo J
go

b' (Sgo)dSg O - t_ - _ tf|j x0

tf | LSgo Sgo J go
go
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Similarly, one gets for 6x and 6x

3 tgol4 _t tf
I tfl J

go

3 3 4

-4(tgo/ ] b' (Sgo)dS + [(tt-_f ) -(tt-_) ] 6x0t f
Sg o , go

+

+

3 4 tf 4

[3(tt-_f)- 2(tt--_f)] eotf- tgoC(tgo)+ _t (2s_
% go

go

t3/- 3_ C' (Sg O) dSg °

Sgo

(26)

_x(t) =

2

I tf {tt-_f}3] ) + 12 _t tf {_ _g-_l(_Xo+b 0

Sgo Sgo I
go

b' (Sgo) dSg ° + [4{ tgOI3-tf, 3(tt-_f) 2] _:0- [9{tt-_f} 2

tf

-81tt--_f l_cO + c(tg°) + _t

go

I_ 8t 03 1- _ c' (Sgo)dS

Sgo _go • go

(27)

By setting time-to-go equal to the preassigned value used to mark

termination of the braking phase, these equations yield the pertur-

bation in high gate conditions.
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Of some mathematical interest are the final values,

6x(tf) and 6x(tf), corresponding to tgo=O. It is easy to show

that if n>0, m<n+l, and g(tg O) is integrable and also bounded

in a neighborhood of t =0, then
go

tf

lim gO g )ds

tgo÷0 s m (Sgo go

tg ° go

= 0 (28)

(26) then implies that

6x(tf) =-b(0) --b(tf) (29)

Similarly, (27), after integrating the first integral by parts,
leads to

_x(tf) = 2b' (0) + c(0)

= -2b' (tf) + c(tf) (30)

while (25) gives

6x(tf) = -6 (b" (0) + c' (0))

^

= -6 (b" (tf) - c' (tf)) (31)

An alternative derivation of (29) - (31) is to expand b(tg o) and

(tg O) =0, and thenc in (20) into a Taylor's series about tg °
m 2

transpose to the left hand side the terms in t , t , and
0 go go

t
go
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B.3 INITIAL ERROR IN ALTITUDE

Suppose that there is no velocity bias, i.e., C(tgo)_0 ,

and that the altitude bias b(tg o) results from filtering (with

constant weights) of an initial altitude error b 0. From equation
(A20 )

-_tf atg O

b' (tg o) = bose e (32)

Substituting into equation (25) gives

6x(t)--12 3 tgoI2 3 (Sx0+b 0 + 12b0_e

tf2 tfl

I3 _t tf 4 go go_t tf e ds 1

_Sg o aSg o

2 e ds - 2t 3 go

tg° Sg 0 Sgo
go go

_ 12 3 - 2 • (6x0+b 0) +

tf2 tf_

(33)

[ /tXto to/t-_tf 2 e
12b0e2e 3 dx - 2

_t x at
go go

eXx -Td
x

The following recurrence relation is readily obtained upon

integrating by parts:

_etf x [etgoetf_eetfxlX
e dx - 1 e e + e d

n n-i go) n-I )n-i x n-It x (at _tf t
go go

(34)
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By successive application of (34) the integral on the left can

be evaluated, for n an integer, in terms of the exponential

integral t

n eX
Ei(£,n) = -_- dx (35)

= Ei(n) - Ei(£)

In particular, equation (33) can be written

_x(t)- 12_'2 tgol2 3 (6x0+b0) + 2 F(_tgo'_tf) (36)

t7 [ tf _ - tf

where

13 _ _ f n ex x]

F(_,_) = n2e -n _2 e x
7 dx- 7 d (37)

= n x]_2 2e-n 2 e x e x

L d£

-- w + n (n--_) (_--i) + 2_ (i+) + ne
= _ n _ e- _ _2 -n

(38)

When w = 0 =

_ (-2)Ei (_,n)]

t)6x(t) = 12 2 - 3 go (6x 0 + b 0) (39)

tf 2 tf 2

so that 6x(t) -z 0 when _x 0 = -b 0. When w=l (_=_), i.e., the entire

bias b 0 is removed at t=0, then b(tg O) = 0 for 0 < tg o < tf and

equation (24) gives

t
In the computations, values of Ei(n) = Ei(-_,D), for q an

integer, were taken from the tabulations in References 7 and 8.

For non-integral n, the excess was obtained by numerical integra-

tion. Several checks showed accuracy to seven significant digits.
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6x(t) - ( t12 2 go_ 3 6x 0
tf

tf 2 tf I

3--_- 2

tf 2 tf

(40)

(39) and (40) are compatible with (36), since one can show that

I 2

3( It ,21 ) or0
lim F(_tgo,_t f) = (41)

0 , for tg O = tf

< tf

lim F(_tgo,_t f) = 0
e+0

, for 0 < tg ° = tf

.°

The final value of perturbation acceleration, 6x(tf),

can be derived from (36) since (28) implies that lim _Ei(_,n) = 0

2 -_ _÷0
so that from (38) F(0,_) = 1/2 n e and

-at
"" 2 f

6x(tf) = -6b 0 _ e (42)

This agrees with the general formula (31). Similarly the final

values of position and velocity are, from (29) and (30),

6x(tf) = -b(0)

-atf

= -b0e

(43)
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6x(tf) = 2b' (0)

-stf

= 2b0ue

(44)

B.4 INITIAL ERROR IN VELOCITY

When the initial velocity is Co, the velocity and

altitude bias functions, C(tg O) and bv(tgo), are given by

equations (A23) and (A30). To determine the guidance response

it is convenient to integrate by parts the general expression

(25) for _x(t). Assuming 6x 0 = 0 and noting that bv(0)(=bv(tf)) = 0
^

I !

and b v (0)(=b v (tf)) = (l-w)c O, we get

- (6x0+Co) +
6x(t) tf tf I

+ 12 f ( 2)tf b  Sgo)0S
v go

Sgo Sgo
go

+ 6 - c' (Sgo)dSg O (45)

Sgo Sgo .
go

The overall result is seen to consist of the sum of an

initial condition perturbation, a perturbation due to the induced

altitude bias (depending upon both v and w), and a perturbation

due to the velocity bias (depending only on v). C(tg o) is propor-

tional to c o , while bv(tg o) is proportional to (l-w)c o. Also the

altitude filter is assumed to start at t=0 and the velocity filter

at tl(0_tl<tf). Before treating the general case, it is useful

to examine the special cases of w=0, v=0 and tl=0, respectively.
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4.1 Velocit E Filtering Onl E (w=0)

Let the velocity bias function be c(t
the altitude bias is go

). When w=0,

b v (tg o) = _t tf

go

c (Sg O )dSg O

so that

b"v(tgo) = -c' (tg o)

Hence in equation (45) the two integrals can be combined to give

 x(t) = 6 go_
tf tgo21 16 Ittf

tf2 I(_X0+Co ) + •

go

s0odg
Sgo Sgo

(46)

With constant velocity filtering starting at t I, we have

(equation (A23))

where

-_tf I Bt

c' (tg o) = CoBe e go . h(tf I _ tg °
) (47)

= t - t 1
tf I f

(48)

i > (t )

for tf z tg ° tfl <t 1

h(tfl-tg o) =

for 0 _< tg o & tfl (tat I)

(49)
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Equation (46) then becomes

.°

6x(t) - 0co
t-f - 2 tf 2 I(6X0+Co) +--tf 1 fbc(Btg°'Btfl)h(tfl-tg°)

(5O)

where

(_q x _D eX x)
fbc(_,q) = e-_ 2_2 e

x--ldx- _ -ydx

= g[_e-(_-g)+i _ g -g_ + qe-n(_-i)Ei(g,n)]
q

(51)

Under nominal conditions of 6x 0 = -Co, the first term in (50)

vanishes so that 6x(t) = 0 for 0 _ t _ t.. When v=l(S=_) for
£

t z t I (and v=0 for t<tl) , c(t) jumps at t I from c o to 0 and one

gets the limiting solution

6x(t) -
t 2 t

6c° 2 -19-_2 - go

tf I tfl tf I
• h(tfl tg o) (52)

Note that the downrange component, x(t), of the LM

trajectory employs velocity filtering but not position filtering

so that equation (50) is applicable to 6z(t) as well. However,

in the present LM guidance program, perturbations in z(t) will

cause tf to vary slightly and the D.E. is no longer strictly
linear.
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4.2 Altitude Filtering Only (v=0)

When v=0, c' (tgo) = 0, so that the last term in

equation (45) is zero. From equation (A28) we have

b"v(tgo) = -(l-w) Coetfe

-_tf _t
e go (53)

Equation (45) then gives, with 6x 0 = -Co,

_x(t)'" - 12c°tf Q - _tf + (l-W) fb(_tg°'etf
(54)

where

 /Xx1fb(_ n) = e -q e e, -_dx - -_d
x x

i [ - (n-_) _2= -_ qe (_-i) +2_ _2
n

Comparing (55) with (38) shows that

-q
+ qe

(55)

(_-2) Ei (_, q)]

fb (_,q) =

2

2 q
q

so that (54) can also be written

(55a)

12c

_x(t) - o

tf
(tgo

tf tf2/ tf2
F (etg O, etf)

(54a)

When w=l (a=_), the second term vanishes.
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4.2 Both Velocity and Altitude Filterin_ (tl=0)

When both altitude and velocity filtering begin at

t=0, the bias functions in equations (A29) give

-Stf Btg °
c' (tg o) = CoSe e (56)

-b" (to)v =

(l-w) c
o

_ -atf e -_tfeSt

(_tfe e tg°) _ (Btfe go) for _
13

L (571
-_tf etg O

(2 - _tf + etgo)_tfe e , for a=B

6x(t), from (45), is then given by

. 12c

_x(t) - o
t
f - + (l-w) fb (tgo;_ B + o fc(Stgo,Btf)

tf 2_ o ' tf

where

fbo(tgo;_,8) =

_ fb(e etf) -la-_ tgo' _-_ fb(Stgo,Bt f)

(2-_tf) • fb(etgo,_tf) + gb(_tgo,_tf)

for e_B

(59)

for _=S

(58)
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fb(_,n) is given by (55), and

(/°xgb(6'n) = ne -n _ e___xdx

- (n-_)
= _ [ne

n x dx )

_ _2 e__
2

x

- _ + ne-n(_-l)Ei(_,n)]

(60)

while

- e
fc(_,n) = ne n 4_2 e dx -36 -_ dx7

(61)

= ne (n-_)(2_-i) + 3_ 2_ 2 _ -- - + ne _(2_-_)Ei(_,n)
q

When w=l (_=_), the term in brackets in(58) reduces to
2

[(tgo/t f) - (tgo/t f) ]. When v=l (8=_), the limiting solution is

"" 6Co 2 go_ (62)

6x(t) - tf tf2

This holds for all w.

4.4 Both Velocity and Altitude Filterin_ (tl>0)

The bias functions are given in equations (A23) and

(A30). c' (tg O) is the same as equation (47). It is convenient

to divide the total altitude bias b into the portion due to w
v

f

alone, say b v , plus the remaining portion, bvl which includes
o

the effect of v starting at time t I. That is, we can write

= (tg o) + bvl(tg o) • h(tfl-tg o) (63a)bv(tgo) bv °
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and hence also

b" (tg o) = b " (tg O) + b " (tg o) " h(tfl-tgo)
v v o vl

(63b)

where, as in (53),

bvo,, (tgo) = -(1-W) Co_tf e-stfe_tgO

(64)

and

tfle
0!

-bvl (tg o)

(l-w) c° L(I - atfl + Utg O) _tfl

-Stf I 8tgol

leUtg O e e j ,- 8tfl

-utf I Stg 0
e e , _=B

(65)

Equation (45) can then be written

.. 12c o _ - + (l-w) fb (Utgo, stf +

6x (t) = t----_ tf I

i 2c o

tfl (l-w) •
(66)

6Co(tgo;e 8) + _ fc(Stgo'Stf I h(tfl-tgo)
fbl ' tfl

where fb(£,n) and fc(_,_) are given by (55) and (61), while
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fb l(tgo;a'S) =

[fb(etgo,etfl ) - fb(Btgo,St f )] for a_81

(67)

(i- tf )fb(_tgo,_tfl) + gb(_tgo,_tfl) for _=B
1

with gb(<,n) given by (60). When tl=O, (66) reduces to (58).

One can obtain the limiting expression of (66) for

v=l (_=_) from the relations

l l]
lim (Stg ° _t - 3
8÷_ fc ' fl ) = L _tfll _ fl;J

(68)

lim

_+_ fb (Btgo ,St

The result is

fl

(69)

°.

6x(t) -
12c

o

tf

+
(l-w) fb (etgo'etf

c° I t 2

+ h(tf_-tg°)I.tf---_ t2 _m°__.-bol
tfl tfll

clw,12 t
o _ gogo

tfl I Itf I tfl2

+
(l-w) fb (etgo'_tf I

(70)
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Equation (70) reduces, in special cases, to formulas

previously derived--(52), (54) and (62). For w=l or _=_, (70)
reduces to

(
12Coi 0tgo2

_x(t)- tf _ tf tf21 h(tfl-tgo tfl t-_fl 3 tfll (71)

B.5 BIAS DUE TO SLOPES

We consider first the case where the slope _ is

constant over the entire interval, 0 _ t ! tf. In order to

write the bias equations of Appendix A.4 in terms of t , we

define range-to-go to high gate go

Zg(tg o) : z D - z (tf-tg o)

_Dtg ° 1 "" 2 1 3 1 t 4= - 2 ZDtgo - 6 Clztgo 12 C2z go (72)

so that

! I

Zg (tg o) = z (tf-tg o)

Zg" (tg o) = -z" (tf-tg o)

(73)

and so on. The operator D (equations (A35), (A39) and (A42)) can
be rewritten as

D z -= -Dz (tf-tg o)g g (tgo)

Zg' (tg o) Zg" (tgo) Zg (iv) (tgo)
- + - +...+

2 4
(74)

3 i

1 I aitg°i'

i=0

(75)
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where the a. are defined in (A43).

then give l
Equations (A50b) and (A51b)

g
b_(tg O) = tan01Zg(tg O) + D'Zg g(tg O) - at -etf }_me g°e {A0cot0 + D z (tf)

g g

where A0, the initial altitude discrepancy, is

(76)

A 0 = b 0 - b 0

(77)

= e 1(_2 B + Zg(tf)tan0)

From (74) and (75), since z
(v)

g (tg o) = 0, we have

Z'g(tg o) + D'Zg g(tg o) = eDggZ (tg o)

3

ai i= _ tgo

i=0

(78)

Defining also

= tfD O D z ( )g g

1

(76) can then be written as

3

i=0

i

ait f

i!
(79)

b,_(tg o) = tan0

i=0

i
a.t
i go
i! (A0cotS+D 0) ae

-_tf st
e go (8O)
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Substituting (80) into the general perturbation equation

with 6x = -b , the final result can be written
o o

0cot+ o t6x(t) = 12 tan6 i--T _i_(tgo,tf ) - 2 go
• tf

(25) ,

(81)

where F(_,n) is given by (38), and

/tt (.. 3t 2 2t i

i x(tg o,tf) = _ - Sg o

Sg o Sg o I
go

ds
go

(82)

Specifically,

t t

•. 1 (go) (i go)
60X(tgo'tf ) = t_ tf - tf

t i t

•" 3 go_ _)(i - t-_f)61X(tgo'tf ) = (2 tf

t t

62X(tgo,tf) = tgo(3- 3 t--_f + 2 in t-_f)

t t t

63X(tgo,tf ) = -tgotf(l - t_f + 3 go_tfin go)tf

(83)

The first term in (81) includes both the effect of terrain alone,

and also the steady state filter effect; the last term is the

transient. The terrain effect can be isolated by letting w=l

(e=_). Since DgZg(tg o) = 0 = D O , one gets simply
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.°

6x(t) = 12tan_ /tt ( s0o
l go Sg o ] tf2 tf2 tf )

go

(84)

The terminal biases, obtained by substituting equation

(A51b) into equations (29)-(31), are

_x(tf) = -tane - (A cote+D )eo o .,

-atf]6x(tf) = 2 a ° - e(AoCOte+Do)e tan

= -2a_x (tf)

[6x(tf) = -6 tan8 al-a 2 (AoCOte+Do)e -etf]

= 6[e26x(tf) + _Z,Dtan%

It is of interest to examine the simple case where the

down range trajectory is linear, i.e., with (72) replaced by

Zg(tg o) = ZD " tgo

(81) then becomes

foot I"" go _ F etf
6x(t) = tang[ tf _ tf tf ] tf 2 (atg°' tf2

12zDtane 12A 0

t fb(etgo'etf ) 2 F(_tgo'_tf)

f tf

F(atgo,_t f)

(85)

(86)
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m

Comparing (85) with (54a) shows that when 6=0=w and

the horizontal component of motion has uniform velocity, then

a constant terrain slope is equivalent to a velocity error

= zDtan0. Actually if equation (31) had included the term,c O
__m

-wz D, representing the contribution of 6, the equivalence could

be shown to hold for 6>0 as well. It seems clear that the actual

quartic trajectory with perturbation (81) corresponds to an

(input) velocity error that varies with time according to a

cubic polynomial.

The generalization to n slopes 01,...,0 n is

straightforward. The bias equation (A57) extends formula (80)

to

3 a.t J -etf

' " I j go _ (tanSi_tanSi_l)Di_le e i-ib T(tg o) = tan8 i j ! e

j=0

st
go

(87)

-etf I e_tgo
-(tan02-tanGl)Dl_e

-etf etg O
(D0tan_l+A0)ee e

for tf. _ tg °
1 < tfi_l, where tf.l = tf - t.i and

D k = Dg gZ (tfk)

3
a.

1 I ._Z tfkJa j!
j=O

(88)

The perturbation is obtained by substituting (87) into (25).

The form of the final result can be simplified by defining

3
a. D.

6i,X(tg ° tf ) = i --_-6 X(tg o tf ) 1' . j! j ' . 2 F (atgo'etf.)

z j =0 ± tf. 1
1

(89)
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Then

6x(t)

n-i

-tg O)6i*x(tgO,tf ) (tanei+l-tanei)
= 12 h (tfi i

i=0

_0

- 12 --_ F(_tg o,_tf)

tf

(90)

where tf0 tf and e0=0. Equation (90) states that the total

perturbation at time t is obtained by superimposing the individual

perturbations generated by all previous incremental changes in

slope.

When n=2 and the slope e occurs only for 0 _ t < t 1

with the terrain being flat thereafter (i.e., el=e and e2=0),

equation (90) reduces to

6x(t) = 12tane[f

j=0

a ,

_I. 6jX(tgo,t f) -

Do+Aocote

2

tf

F(_tgo,_t f) -

(91)

(j_0 a. D 1 }}'tfl tf tg°h(tfl-tg o) _.l 6jX(tgo ) 2 F(_ ,etfl

= i
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0

.1

.2

.4

Table i. Terminal Biases

1.0

-2400

-20

0

-1038

-2.71

0

-589

-.37

0

-300

-.007

0

.05

-722

18.1

.14

-195

7.3

-.36

-71.7

3.3

-.22

-22.6

1.0

-.08

Due to

tl = 0

.i

-359

19.9

.013

-72

5.0

-.37

-17.1

1.4

-.16

-2.3

.23

-.03

Initial Velocity

.2

-160

20

0

-26.0

3.6

-.31

-4.4

.66

-.i0

-.16

.03

-.007

Error I

1.0

0

20

0

0

2.7

-.27

0

.37

-.07

0

.007

-.003

0
0

0

tl = 40

.1

.2

.4

1.0

-2400

-20

0

-1684

-5.27

0

-1358

-1.39

0

-1098

-.097

0

-8OO

0

0

-722

18.1

.14

-357

13.1

-.62

-215

9.5

-.62

-125

6.1

-.46

-65

3.2

-.24

-359

19.9

.013

-138

9.6

-.70

-61

5.0

-.57

-20.3

1.9

-.28

-5.7

.57

-.09

-160

20

0

-51

7.0

-.61

-16.6

2.5

-.39

-2.2

.38

-.09

-.05

.01

-.003

0

20

0

0

5.3

.53

0

1.4

.28

0

.10

.04

.°

iEntries in each cell are 6x(tf), 6x(tf), and 6x(tf).
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Table 2.
1

Terminal Biases for 2 ° Slope

tf=120

(Figure 12)

tf=60

(Figure 13)

tf=120,b0=0

(Figure 14)

Slope bias

treated as

initial alt.

error

(Figure 15)

W=0

-5178

0

0

-2060

0

0

0

0

0

-5178

0

0

W=.05

-1294

64.7

-1.16

-ii01

55.1

-.04

-1085

54.2

-.38

-267

12.9

-.97

W = .1

-619

61.9

-1.90

-573

57.3

-1.216

-607

60.7

-1.71

-12.9

1.3

-.19

W--. 2

-279.5

55.9

-2.00

-278.3

55.7

-1.93

-279.5

55.9

-2.00

-.03

.006

-.001

W=I. 0

0

49.2

-2.06

0

49.2

-2.06

0

49.2

-2.06

0

0

0

Variable Duration

tf=120

(Fig. 16)

P

iW=.l
I

ti=20

-4.85

.49

-.07

0

0

0

tl=40

-16.8

1.68

-.25

0

0

0

tl=60

-45.7

4.57

-.68

0

0

0

tl=80

-115.0

11.50

-1.72

0

0

0

tl=100

-272

27.22

-4.08

tl=10 tl=20 tl=30 tl=40

_=60

(Fig. 17)

W=. 1

W=I.0

-27.1

2.71

-.41

-68.6

6.86

-i.0

-132

13.2

-2.0

-226

22.6

-3.4

iEntries in each cell are 6x(tf) , _x(tf) , 6x(tf) .
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